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20 March 2015

Problem 1. Let n ≥ 4 be an integer. Suppose that in a group of 2n people everyone speaks at
least one of ` languages. Suppose that each of the ` languages is spoken by at least k people.
We want these people to stand in a circle in such a way that each two neighbors have a common
language.

(a) If ` = 2, what is the minimal value of k such that this is always possible?

(b) If ` = 3, what is the minimal value of k such that this is always possible?

Proposed by Daniël Kroes.

Solution.

(a) Suppose the languages are Dutch and English. Consider the situation where n people
speak Dutch and the other n people speak English. Then clearly they cannot stand in
a circle such that the condition is met, so k ≥ n + 1. We claim that k = n + 1, so
assume that there are at least n+ 1 people that speak Dutch and n+ 1 people that speak
English. Then among the at least n+ 1 people that speak Dutch, there must be at least
2 people who also speak English. Now we can ensure that everyone can speak with both
its neighbours by making sure that everyone that speaks Dutch are on the same arc of
the circle determined by these two persons, and that all persons that do not speak Dutch
are on the other arc.

(b) Again, the answer is k = n + 1. Suppose the languages are Dutch, English and French.
To see that k ≤ n does not work, consider the situation where n people speak both Dutch
and English, and the other n people speak French. Then they cannot stand in a circle
such that the condition is met. Now suppose that each language is spoken by at least
n+ 1 people. Analogously to above we want to find three different people such that one
of them speaks both Dutch and English, another speaks both English and French and the
third speaks both French and Dutch. Let a, b and c be the number of persons that speak
Dutch and English, English and French and French and Dutch, respectively. W.l.o.g. we
assume a ≥ b, c. Analogously to part (a) we find a, b, c ≥ 2. Suppose that a = 2 hence
also b = c = 2. Then there are precisely n+ 1 people speaking each language (otherwise
b > 2 or c > 2), and the n− 1 people not speaking French must speak English (as b = 2)
and Dutch (as c = 2) so there are at least n − 1 ≥ 3 people speaking both Dutch and
English, contradicting a = 2. Therefore, we have a > 2. Now, choose someone speaking
both French and Dutch and someone else speaking both English and French, which is
possible as b ≥ 2. Now, as a > 2 there is someone different from these two speaking both
Dutch and English, showing the required. �
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Problem 2. Let n > 1 be an integer. Show that there exist positive integers a, b, c satisfying
a+ b = n and |ab− c2| ≤ 4.

Proposed by Merlijn Staps.

Solution. It is easily checked that the statement holds for n ≤ 12. Suppose n ≥ 13 and
write n = 5k + ` where k, ` are integers satisfying k ≥ 3 and |`| ≤ 2. Taking a = 4k,
b = k + ` and c = 2k + ` (note that k ≥ 3 implies b, c > 0) yields a + b = 5k + ` = n and
|ab− c2| = |4k(k + `)− (2k + `)2| = |`2| = |`|2 ≤ 4, as desired. �

Problem 3. Let N = {1, 2, 3, . . .} be the set of positive integers and let f : N → N be a
bijective function.

(a) Is it possible that
∑∞

n=1
1

nf(n)
diverges?

(b) Is it possible that
∑∞

n=1
1

n+f(n)
converges?

Proposed by Daniël Kroes.

Solution.

(a) No, by the Cauchy-Schwarz inequality we find for all N ∈ N that

N∑
n=1

1

nf(n)
≤

√√√√ N∑
n=1

1

n2
·

√√√√ N∑
n=1

1

f(n)2
≤

√√√√ ∞∑
n=1

1

n2
·

√√√√ ∞∑
n=1

1

f(n)2
=

√
π2

6
·
√
π2

6
=
π2

6

which shows that
∑∞

n=1
1

nf(n)
converges, with limit at most π2

6
.

(b) Yes, let {m1,m2,m3, . . . , } = {3, 5, 6, 7, 9, . . .} enumerate all integers that are not a power
of 2. Define the function f by f(mi) = 2i−1 for all i ∈ N and f(2j) = mj+1 for all j ≥ 0.
Then clearly f is bijective. Then

∞∑
i=1

1

mi + f(mi)
=
∞∑
i=1

1

mi + 2i−1
≤

∞∑
i=1

1

2i−1
= 2

and
∞∑
j=0

1

2j + f(2j)
≤

∞∑
j=0

1

2j
= 2,

are both convergent, so the same holds for their sum, which is precisely
∑∞

n=1
1

n+f(n)
. �

Problem 4. Let G be a finite group with identity e and let H and K be subgroups of G such
that |H| · |K| = |G| and H ∩K = {e}. Prove that H ′ ∩K ′ = {e} for all conjugate subgroups
H ′ and K ′ of H and K, respectively.
For a subgroup Y of a group X, a conjugate subgroup of Y is a subgroup of X that is of the
form xY x−1 for some x ∈ X.

Proposed by Raymond van Bommel.
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Solution. We claim that G = {hk : h ∈ H, k ∈ K}. Since |H| · |K| = |G| it suffices to show
that all these elements are different. So let h1, h2 ∈ H and k1, k2 ∈ K satisfy h1k1 = h2k2 then
h−12 h1 = k2k

−1
1 . Since h−12 h1 ∈ H and k2k

−1
1 ∈ K and H ∩K = {e} we find h−12 h1 = e = k2k

−1
1

so indeed h1 = h2 and k1 = k2.
Now, by conjugating H ′ and K ′ by the same appropriate element we may assume without loss
of generality that H ′ = H. Suppose that K ′ = (hk)K(hk)−1 = h(kKk−1)h−1 = hKh−1 and
let g ∈ H ∩ hKh−1. Then g = hkh−1 for some k ∈ K, which rewrites as k = h−1gh ∈ H so
k ∈ K ∩H, hence k = e. But this implies that g = heh−1 = e, as required. �

Alternative solution. Let X = (G/H) × (G/K) be the set of pairs of a right coset of H
in G and a right coset of K in G. Let G act on X coordinatewise by left multiplication:
g · (aH, bK) = (gaH, gbK). The stabilizer of (H,K) ∈ X is H ∩ K = {e}. By the orbit-
stabilizer theorem, the orbit of (H,K) ∈ X has size |G| = |X|. Hence, the action of G on X
is free and transitive. In particular, for each a, b ∈ G, the stabilizer of (aH, bK) ∈ X, which
equals aHa−1 ∩ bKb−1, is trivial. �

Problem 5. Let n ≥ 2 be an integer and let A = (ai,j) be a real n× n matrix with entries ai,j
different from 0 that satisfy

ai,jai+1,j+1 − ai+1,jai,j+1 = ij

for all i, j ∈ {1, 2, . . . , n− 1}. Determine the rank of A.

Proposed by Christophe Debry.

Solution. The rank equals 2. For n = 2 the only imposed equation implies det(A) = 1, so A is
invertible and has rank 2. Let n ≥ 3 and define for all i, j ∈ {1, 2, . . . , n} and k ≤ min(n−i, n−j)
the matrix

M
(k)
i,j =


ai,j ai,j+1 · · · ai,j+k
ai+1,j ai+1,j+1 · · · ai+1,j+k

...
...

. . .
...

ai+k,j ai+k,j+1 · · · ai+k,j+k


Then det(M

(1)
i,j ) = ij for all i, j ∈ {1, 2, . . . , n − 1} and one can easily check that for all

i, j ∈ {1, 2, . . . , n− 2} we have

ai+1,j+1 det(M
(2)
i,j ) =

∣∣∣∣∣ det(M
(1)
i,j ) det(M

(1)
i,j+1)

det(M
(1)
i,j+1) det(M

(1)
i+1,j+1)

∣∣∣∣∣ =

∣∣∣∣ ij i(j + 1)
(i+ 1)j (i+ 1)(j + 1)

∣∣∣∣ = 0,

so det(M
(2)
i,j ) = 0, since ai+1,j+1 6= 0.

We now prove that the third row of A is a linear combination of the first two rows of A.
Because det(M

(2)
1,1 ) = 0 but det(M1,1)

(1) 6= 0 there exist c1, c2 ∈ R with a3,i = c1a1,i + c2a2,i for
all i ∈ {1, 2, 3}. Analogously, there exist c′1, c

′
2 ∈ R with a3,i = c′1a1,i + c′2a2,i for i ∈ {2, 3, 4}

(consider M
(2)
1,2 and M

(1)
1,2 ). We now know

c1(a1,2, a1,3) + c2(a2,2, a2,3) = c′1(a1,2, a1,3) + c′2(a2,2, a2,3).

Because det(M1,2)
(1) 6= 0 we find that (a1,2, a1,3) and (a2,2, a2,3) form a basis of R2 over R so

c1 = c′1 and c2 = c′2. By an inductive argument, c1a1,i+c2a2,i = a3,i holds for all i ∈ {1, 2, . . . , n}.
Analogously, any row in A is a linear combination of the two preceding rows, so by induction
each row is a linear combination of the first rows, showing that A has rank at most 2. Since
det(M

(1)
1,1 6= 0 we find that the rank is indeed exactly 2. �
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Problem 6. A biologist studies an exceptional bacterial species. When a bacterium of this
species takes d minutes to divide, its two descendants take d and d+ 1 minutes to divide. The
biologist starts with a single bacterium that takes 1 minute to divide.
Show that when the total number of bacteria becomes even for the n-th time, it stays even for
exactly n minutes.

Proposed by Merlijn Staps.

Solution. For n ≥ 0 define An to be the total number of bacteria after n minutes. Write
Bn = An−An−1 for the number of bacteria that divides exactly n minutes after the start of the
experiment. Such a bacterium can be described by a sequence (a1, . . . , ar) of natural numbers
that indicates how long the predecessors of this bacterium took to divide. We then must have
a1 + · · ·+ ar = n and ai ∈ {ai−1, 1 + ai−1} for 1 < i ≤ r. Note that each sequence corresponds
to a partition of n and that Bn counts the number of such partitions with the property that if
b occurs in the partition, b− 1 must occur as well. These partitions are dual to the partitions
that consist of distinct elements, so Bn also counts the number of partitions of n in distinct
elements. We will show that Bn is odd precisely when n is a pentagonal number, i.e. precisely
when n is of the form k(3k±1)

2
for some natural number k. Since the difference between the 2`-th

and the (2` − 1)-th element in the set {1, 2, 5, 7, 12, 15, . . .} of pentagonal numbers is equal to
` this is sufficient for the desired conclusion.
A partition λ of n in distinct parts corresponds bijectively with a sequence (a1, . . . , ar) of natural
numbers with sum n that satisfies a1 > · · · > ar. We define pλ = max{i : ai = a1 + 1− i} and
qλ = ar. To λ we now associate another partition λ′ of n in distinct parts in the following way.
If pλ < qλ we subtract 1 of the first pλ parts of the partition and we add a new element pλ. If
pλ ≥ qλ we remove the last part and we add 1 to the first pλ elements. This yields a second
partition λ′ that satisfies λ′′ = λ, unless λ has the form (2`, 2` − 1, . . . , ` + 1) (we then have
(p, q) = (`, `+ 1) and the part that we add will not be smaller than the last part) or the form
(2` − 1, 2` − 2, . . . , `) (we then have (p, q) = (`, `) and a problem arises because we add 1 to
the `-th element which we already removed; the resulting partition λ′ does not satisfy λ′′ = λ).
If these cases do not occur, we can divide the partitions of n into distinct parts in pairs (λ, λ′)
and therefore the total number Bn of such partitions will be even. If such a case does occur,
there is exactly one partition that does not belong to a pair. In that case Bn is odd and this
happens precisely when n is of the form

2`+ (2`− 1) + · · ·+ (`+ 1) =
`(3`+ 1)

2

or of the form

(2`− 1) + (2`− 2) + · · ·+ ` =
`(3`− 1)

2
.

In conclusion, Bn is odd if and only if n is a pentagonal number. �

Remark. The argument in the second part of the proof can be extended to prove Euler’s
theorem on pentagonal numbers. This theorem states that∏

k≥1

(1− xk) = 1 +
∑
k≥1

(−1)k
(
xk(3k+1)/2 + xk(3k−1)/2

)
.

The left-hand side of this equation is the generating function for the difference between the
number of partitions of n in distinct odd parts and the number of partitions of n in distinct
even parts. One can show that this difference is ±1 if n is a pentagonal number and 0 otherwise.
This also means that that Bn is odd exactly for pentagonal numbers n.
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